

Integrating Graphics into Dynamic Message Signs to ease the slow down effect

Presented by: Elizabeth Negrón Díaz Graduate Student: Merve Keceli

Project Investigator: Dr. J.H. Wang

INTRODUCTION

- DMS have been used in Rhode Island since early 2004.
 - RI's DMS systems are capable of displaying 3 lines with 20 characters on each line.
- Long and complex messages demand attention from drivers who are occupied by the already tense highway driving task.
- In a driving situation the **amount of time** available to read a message on a sign is **limited**.

OBJECTIVES

- To research about previous methodologies that have been used to identify drivers' slow downs due to in service DMS.
- To understand the slow down effect and its possible causes.
- To find a possible solution to reduce or even eliminate the slow down effect.

PROBLEM

- Research studies have identified that driver's slow down when approaching DMS.
 - (Ref. Alm and Nilsson (2000); Boyle and Mannering (2003)
- A non uniform reduction in speed causes an increase in the speed variance at the road section, though increasing the possibility of an accident.
 - "Larger speed variance is related to a higher crash rate" (Ref: Garber and Gadiraju et al., 1989)

CAUSES FOR SLOW DOWNS: DRIVERS' MENTAL WORKLOAD

- Drivers must time-share their attention to:
 - Roadway geometry
 - Traffic
 - Traffic Signs
- It will take drivers longer to read the DMS message, since they can't focus 100% on this task.
- Drivers tend to reduce their speed to have more time to react to possible incidents. (Ref. Alm and Nilsson et al.,2000)

CAUSES FOR SLOW DOWNS: DMS's MESSAGE VISIBILITY

- 18" characters signs
 - Normal reading distance: 800ft (Ideal conditions)
 - Reading distance at nighttime: 600ft
- A driver in I-95 would have 8.4 sec to read a DMS message, while driving at the posted speed.

Ref: FHWA CMS Operation and Messaging Handbook

ALM'S AND NILSSON'S STUDY (2000)

- Purpose:
 - Increase understanding of the effects of different Incident Warning Systems (IWS) messages on drivers' behavior.
- Methodology used: Driving Simulation
 - 1. Control group: No Incident Warning Systems
 - 2. PORTICO site group:
 - White poles located on the left and right sides of the road with a red light on top.
 - 3. MELYSSA site group:
 - Incident message presented using a DMS.
 - The messages displayed had 3 levels of detail
 - M1: Warning and incident type
 - M2: (M1 + Distance to incident)
 - M3: (M2 + Recommended action)

ALM'S AND NILSSON'S RESULTS

CONGESTION

ROADWORK

Ref: Incident Warning Systems and Traffic Safety: A comparison between the PORTICO and MELYSSA test site systems

ACCIDENT

COND

COND

Portico

COND

COND

COND

DRIVERS COMPENSATING BEHAVIOR

- Drivers' tend to speed up downstream once passed the DMS message. (Ref. Alm and Nilsson, 2000; Ulfarsson and Shankar, 2002)
- This behavior might be due to:
 - Desire to compensate for time lost reading the message
 - Feeling overconfident that the information will allow them to react in a timely manner

HOW CAN DMS MESSAGE DISPLAY BE ENHANCED TO EASE SLOW DOWN EFFECT?

- Adding graphics to DMS messages
 - The legibility distance of symbol signs is twice as that of text traffic signs (Kline and Fuchs, 1993)
 - Graphically presented information produced faster responses than words. (Wang and Hesar et al. 2005)

- Advantages of graphicaided messages:
 - Identified easier,
 - Identified quicker,
 - Larger visibility distance,
 - Could be seen better under adverse viewing conditions,
 - Can be understood by people who can't understand the language in words

WANG AND HESAR'S RESULTS

• Overall there was approximately a sec reduction in the mean response time between the text message and the graphic –aided message.

Ref. Employing Graphics to aid Dynamic Message Signs, Hesar 2005

FIELD STUDY

- METHODOLOGY: Full scale study
 - Measure drivers' speed as they approach DMS
 - In service / Out of service
 - Locations of measurement
 - DMS in visual range of driver
 - After driver has passed the DMS location
- INFORMATION TO BE GATHERED
 - Quantify driver's slow down effect
 - Observe driver's compensating behavior

Area of study

- I-95
 - The only Interstate highway in the State of RI
 - Urban / Rural Segment
 - Speed Limit: 65mph
 - There are 8 DMS located in I-95 RI
 - 4 Northbound
 - 4 Southbound

Ref. www.mapathon.com/ri.html

FIELD WORK

MOBILITY TECHNOLOGY SENSORS

- A Network of 64 Radar Vehicle Detectors (RVD) was installed in Rhode Island early in 2004
- Locations
 - I-95, I-295, Route 6, Route 10, Route 4, and Route 146 (primarily in the Providence Metropolitan Area)
- The network collects key traffic information, including:
 - Vehicle speeds per lane
 - Vehicle counts
 - Roadway density

This system is not capable of measuring the per vehicle speed

LOCATION OF MOBILITY TECHNOLOGY SENSORS

- DMS located near MTS
 - DMS 2-2
 - DMS 2-3
 - DMS 2-6
 - DMS 2-12
 - DMS 2-4

MTS SPEED INFORMATION

- Vehicle's Speed Information
 - Average speed in each lane
 - 5 min time intervals
- Study Period
 - START: 30 min before the DMS is activated
 - END: 30 min after the DMS is deactivated

FUTURE WORK

- Field studies (two approaches)
 - Analyze the speed data obtained from the MTS
 - Test subjects will drive through the test route several times to record the traffic speed as they approach and depart the DMS before and after the sign is activated
 - In-vehicle digital image recorder
 - GPS
 - Portable computer

TO CAPTURE THE DRIVING
SCENE AND TEST THE
VEHICLE'S SPEED

FUTURE WORK

- Questionnaire Survey
 - Obtain information about drivers' understanding and interpretation of graphics-aided messages and their preferences on the use of graphics in DMSs.
- Driving Simulation Experiment
 - Test DMS messages which appeared in the field study and were surveyed in the questionnaire
 - Test critical factors affecting the design and display of DMS messages

REFERENCES

- Hesar, S., Collyer C. E., Wang J.H., 2005, "Adding Graphics to Dynamic Message Sign Messages".
- Hesar, S., Wang J.H., 2005, "A human factors study on Graphic-Aided Dynamic Message Signs"
- Ulfarsson, G.F., V.N. Shankar, and P. Vu., 2002, "The Effect of Variable Message Signs on the Relationship Between Mean Speeds and Speed Deviations", Proceedings of the 81st Annual Meeting of Transportation Research Board, CD-ROM, 29.
- Alm, H., Nilsson, L., 2000, "Incident Warning Systems and Traffic Safety: A Comparison between the PORTICO and MELYSSA Test Site Systems".

ACKNOWLEDGEMENTS

- Dwight Eisenhower Fellowship Program
- URI Transportation Center
- Dr. J. H. Wang (Faculty Mentor)
- Dr. Valerie Maier-Speredelozzi
- Merve Keceli (Graduate Student)
- Dr. Benjamín Colucci
- RIDOT Transportation Management Center Staff

Questions?